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Abstract 

A treatment is given in terms of Ato, A20 ~s) space of 
the system involving an X-ray source, a crystal mono- 
chromator and a single-crystal diffractometer. The 
interaction of the wavelength dispersion of the mono- 
chromator crystal, M, and that of the small specimen 
crystal, C, is examined for various orientations of the 
axis of M relative to that of C. A simple diagrammatic 
representation of the wavelength dispersion of the 
system is derived. These diagrams encompass the 
parallel, antiparallel and crossed-crystal arrange- 
ments and are equivalent to the theoretical relation 

ato k(tan 0c +cos ~M tan OM) 

A20 k(2tan Oc +cos q~  tan 0~) '  

Ato is the angular displacement of C and A20 the 
corresponding displacement in detector space, Oc the 
Bragg angle of C and 0M that of M while k =  
(AA/A) tan 0~ and ~PM is the angle between the axes 
of C and M. From the principle of reciprocity in 
optics, the functional dependence of the radiation 
that arrives at the small specimen crystal from an 
extended source via the monochromator is investi- 
gated in terms of the mosaic spread of M, the depth 
of beam penetration into M and the wavelength band. 
Combination of the wavelength dispersion and the 
source size/monochromator mosaicity with the 
mosaic spread of the specimen crystal yields the corre- 
sponding Ato, A20 (s) diagrams. For the case where 
the rotation axes of the M and C crystals are parallel, 
the general form of the intensity distributions is 
examined for selected values of tan Oc relative to 
tan 0~. 

Introduction 

Recent studies (Mathieson, 1982, 1984a) have 
explored the intensity distribution associated with an 
individual Bragg X-ray reflection from a small crystal 
in terms of Ato, A20 space for a basic experimental 
set-up consisting of an X-ray source, a specimen 
crystal and its orienting device (diffractometer) and 
a detector with a narrow aperture in front of it (or a 
linear position-sensitive detector). 

With the incorporation of an additional com- 
ponent, a crystal monochromator, between the source 

and the specimen crystal (an ante-monochromator, 
see Mathieson, 1968), certain features in the experi- 
ment are affected, namely the divergence/conver- 
gence of the X-ray beam and the wavelength distribu- 
tion, while a new factor is introduced, the interaction 
between the dispersion of the monochromator crystal 
and that of the specimen crystal. It is therefore advis- 
able to extend the analysis so far carded out to 
investigate the modifying influence of the new com- 
ponent on the intensity distribution, I(Ato, A20 (°)) 
(for terminology, see Mathieson, 1984a). Discussion 
is restricted to the flat-cone mode of operation in 
respect of the specimen crystal. 

Compared with the non-monochromator case, e.g. 
Alexander & Smith (1962), theoretical discussion of 
combined monochromator/diffractometer X-ray sys- 
tems has been rather limited, e.g. Ladell & Spielberg 
(1966), Werner (1972)• 

Although the monochromator/diffractometer sys- 
tem in neutron diffraction has been dealt with exten- 
sively by many workers, e.g. Willis (1960), Cooper & 
Nathans ( 1967, 1968), Werner (1971), etc., the various 
treatments have generally been presented in the form 
of relatively cumbersome formulae with rather limited 
illustration of their relevance to operational practice• 
Also, the formulae relate to one-dimensional results 
where the contributions of the various components 
have all been compressed into the one dimension 
and, consequently, are not readily identified in experi- 
mental profile measurements• As a result, inferences 
of potential significance for the X-ray case do not 
appear to have been derived from the neutron case. 

That the two-dimensional viewpoint has advan- 
tages in identifying and estimating the various com- 
ponents and in providing improved resolving power 
has been shown in Mathieson (1982, 1984a). 

A Ato, A20 (°) study of the neutron diffraction case 
that included a monochromator component has been 
recently presented by Schoenborn (1983). While it 
will be evident that there are certain features in com- 
mon between that study and this one, the present 
examination is directed primarily at the X-ray diffrac- 
tion case. The aim here is to present the analysis 
mainly in diagrammatic form (as in Mathieson, 1982) 
so that the relative magnitudes of the components are 
evident by inspection and any significance of a prac- 
tical nature that the treatment has will be more readily 
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appreciated by X-ray practitioners and hence will 
provide an effective guide to the choice of experi- 
mental parameters, e.g. Mathieson (1984b), and the 
appropriate procedure for the measurement of 
integrated intensity. 

While the matter is discussed in terms of 2D 
(Ato, A20) space, its relevance for the more conven- 
tional usages of 1D (Ato) space should be evident. 

General plan 

The approach to be taken is to consider first the 
situations that arise in terms of point sources and 
crystals (specimen and monochromator) with zero 
mosaic distribution in order to identify the responses 
of the various components, i.e. their loci in Ato, A 2 0 ~°) 
space. The effects of significant mosaic distribution 
and of extended sources can then be introduced to 
establish more realistic situations while allowing 
identification of the presence of characteristic loci. 
We shall deal only with the case of s = 0, i.e. no 
synchronized angular displacement of the detector 
arm with angular displacement of the specimen crys- 
tal. For other scan links, s = 1 or 2, the corresponding 
distributions can be derived straightforwardly (see 
Mathieson, 1982, 1984a). 

So far as the monochromator crystal is concerned, 
its axis may be at any angle, ~o~, to the axis of the 
specimen crystal (see Mathieson, 1968, 1978). 

Monochromator axis parallel to the specimen axis 

(i) Point source, one wavelength 

Fig. 1 represents the case of a point source, S, 
emitting radiation of only one wavelength, A, in rela- 
tion to monochromator and small specimen crystal, 
M and C, respectively, with either zero or non-zero 
mosaic spreads, /z. The resultant distributions in 
Ato, A20 (°) space are depicted in Fig. 2 for the various 
combinations of mosaic spread of M and C, namely 
(a) /x~ =/Zc =0,  (b ) /x~  =0, /Zc  =/x2, (c) /xM =/zl,  
/Xc = 0, ( d ) / z ~  =/zl, /Zc =/x2; the lengths of the lines 
in (b) and (c) and of the edges of the parallelogram 
in (d) represent outer limits of the distribution. 

Since only one wavelength is involved, the question 
of dispersion does not arise and so +2Oc and -2Oc 
are equivalent. The beam convergent on C from the 
monochromator crystal is akin to the source in the 
non-monochromator case. 

I ~  1 1 1  ~ 

$ C 
Fig. 1. A point source, S, of monochromatic radiation, and a point 

specimen crystal, C, equidistant from the ante-monochromator, 
M. 

(ii) Two point sources, two wavelengths 

Fig. 3 represents the situation with a mono- 
chromator crystal, M, and a specimen crystal, C, both 
of zero mosaic spread. $1, $2 are visualized as separate 
sources of A~, A2 respectively or as two points on an 
extended source, the diffraction conditions at M 
selecting A1 and A2. Whatever the viewpoint, the situ- 
ation at the specimen crystal is of two beams, of 
wavelength A~ and A2 respectively, converging on the 
point C with an interbeam angle A0M = 02--01 = 
(AA/A1) tan 0M, where AA : ~ ' 2  - -  ~ 1 ,  /~ --" 

(1/2)(A2+ AI) and 0M =(1/2)(02+ 01). Hereafter, we 
shall consider the wavelength dispersion, AA/A = k, 
a set value. The incident beams diffract from C and, 
for the post-C region, we shall take the beam of A1 
radiation (the shorter wavelength) as the reference 
for angle estimation. 

The diffraction situation in respect of AIA2 is no 
longer symmetrical. Following the convention (in 
two-crystal spectrometry) that the diffraction from 
the first (here monochromator) crystal defines the 

A28 A28 
(a) (b) 

A~o / Aco 

A28 A2e 
(c) (d) 

Fig. 2. The hypothetical intensity distributions, I(Ato, A20(°)), are 
detailed for the various combinations of mosaic spread of M 
and C, namely (a)/z M =/z c = 0, (b) ttM= 0,/z c = it2, (c)/z~ = 
/x 1 , /zc- = O, (d) /x~a =/zl, /xc =/z~. 

Fig. 3. The situation with two sources St and $2 of radiation of 
wavelengths A1 and A2 respectively, diffracted at angles 01 and 
02 from the monochromator, M. At the position of the specimen 
crystal, C, the interbeam angle A0M = 02- 01 (= AA/A tan 0~), 
where AA = A2- At, A = (1/2)(A2 + AI) and 0M = (1/2)(02+ 01). 
The positive and negative directions of ~oc are, according to the 
convention in two-crystal spectrometry, indicated as (+)to c and 
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positive angular direction, then the positive and nega- 
tive directions of oJc, (+)O~c and (-)tOc respectively, 
follow, see Fig. 3. 

(a) The (-)tOc region 

The 'illumination' distribution, I(A), arriving at the 
point C, has an angular separation between A, and 
A2 of AO~ = k tan 0~. This distribution is constant 
for a given 0~ and invariant in orientation relative 
to C. The corresponding 'receptor/transmitter' distri- 
bution, R~ T(A), of C can be displaced around the 
axis of C and, in addition, the distribution alters with 
the value of the particular d spacing of the Bragg 
reflection of C, the separation between A1 and A2 
being AOc = k tan 00 

For the (-)tOc region (i.e. anti-clockwise rotation 
of crystal C in Fig. 3), to change the situation in 
which M and C are set to satisfy the Bragg condition 
for A1 to that for A2, i.e. to change the coincidence of 
R~ T(A,) with I(A,) to the coincidence of R~ T(A2) 
with I(A2) requires an angular displacement of the 
specimen crystal of 

Ato = AOc -AOM = k(tan Oc - t a n  0~). (1) 

The corresponding displacement in A20 (detector 
space) is 

A20 = A 2 0 c - A O ~  = k(2 tan 0 c - t a n  0M). (2) 

So the ratio of Ato to A20 is given by 

Ato k(tan 0c - t a n  0~) 
A20 -- k(2 tan 0c - t a n  0~)" (3) 

Equation (3) establishes, in Ato, A20 space, (a) the 
locus of the wavelength component (k) for specific 
values of 0M and 0c and (b) the locus of a constant 
value of k (and 0M) with change of 0o 

The relationship summarized in (3) is more readily 
appreciated in diagrammatic form, Fig. 4(a). The 
origin of local Ato, A20 space for any reflection is 
arbitrary but, for the present discussion, we associate 
it with the lower limit of the A range, namely h 1. The 
location of the point corresponding to the upper limit 
of the h range, i.e. ;¢z, follows from (3). So, for fixed 
values of 0~ and 0c, i.e. for one reflection of the 
specimen crystal, the locus of the wavelength com- 
ponent is a straight line, for example, OL' in Fig. 
4(a), corresponding to a general tan 0c value. For a 
set value of k, the locus of A2 in respect of all reflec- 
tions of the specimen crystal, i.e. as tan 0c varies from 
0 to oo, is represented by the line O'A'B'C' .  

In dealing with Ato, A20 space, we have to consider 
angular dispersion in terms of both Ato and A 2 0 - n o t  
merely Ato, as in the classical wide-aperture treatment. 
From the 2D viewpoint, there are two conditions of 
interest, rather than one, as in the classical viewpoint. 

At 0c = 0 °, i.e. tan 0c = 0, the dispersion, OO', in 
Fig. 4(a) is - k t a n  0M in both AoJ and A20 so the 

slope of the locus is -135 ° to the +A20 axis. As 0c 
increases, the dispersion of the specimen crystal C 
interacts with the dispersion of crystal M and the 
slope changes towards -90 ° . When the condition 

Aco 

( - )  0J c region Z _ /  
. , i t  / 

B / . / / ~  

/ e '  Bo A28 

(a) 

/ Z+ 

(+)w c region 

/Xw ~ / ~ / / / /  

X. /X28 

(b) 

(c) 
Fig. 4. (a) Wavelength dispersion in the (-)~o c region. Diagram 

of the change of the locus of the wavelength dispersion be- 
tween A1 and A 2 in Ato, A20 (°) space in terms of the relationship 
between 0 c and OM given in (3). The local origin in Aa~, A20 (°) 
space corresponds to the A I peak. OL' represents the locus for 
a general k t an  0c value; 00 ' ,  k tan 0c=0;  OA', k tan  0c= 
(k/2) tan OM ; OB', k tan 0c = k tan OM ; and OC', k tan 0c > 
k tan OM. The line OZ_ corresponds to the locus for the non- 
monochromator case. (b) Wavelength dispersion in the (+)to c 
region. This diagram is based on (3a). OO" corresponds to 
k tan 0c = O. OL" represents a general k tan 0c value. The line 
OZ+ corresponds to the locus for the non-monochromator case. 
(c) The wavelength dispersion diagram for general ~0 M values. 
This diagram is based on (4). For the case where tpM = 90 ° (and 
also the non-monochromator case) the locus corresponds to the 
straight line through the origin at a slope of 1/2 to the A20 axis. 
Where CpM = 0 °, the locus limit follows the line 7 ,  r~,7, O' 
corresponding to tan Oc=O , +20(+o~) towards Z~, and 
- 2 0 ( - t o )  towards Z ' .  Where eM = 180°, the locus limit follows 
the line Z_O" "Z+" parallel to Z_OZ+, 0" corresponding to 
tan 0c =0, +20(+to) towards Z~. and - 2 0 ( - t o )  towards Z'_'. 
The symmetry of the diagram reflects the mutual dependence of 
tp M and the sign of 20. 
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tan 0c = ( 1 / 2 ) t a n  0M is reached, the slope is - 90  ° 
exactly and the dispersion corresponds to OA'. Here 
the dispersion in A20 is zero, i.e. all wavelengths in 
the bandpass A I to A2 will arrive at the same point at 
the detector (or will pass through a fixed narrow slit 
in front of the detector). The dispersion in respect of 
'4to is -(k/2)tanOM. At a further stage as Oc 
increases, the slope of the locus moves towards 0 ° 
and when the dispersion of M and C are equal, i.e. 
tan Oc =tan  0M, the dispersion of the system in 
respect of Ato is exactly zero; this corresponds to 
OB'. This is, of course, the classical condition associ- 
ated with the two-crystal spectrometer in the so-called 
parallel condition (Compton & Allison, 1935) (which 
deals with two extended-face crystals). However, in 
respect of A20, the dispersion is not zero but is 
k tan 0c (= k tan 0~). This dispersion in A 2 0 is half 
of that, 2k tan Oc, represented by OBo, appropriate 
to the non-monochromator case, which would corre- 
spond to the point B on OZ_, Fig. 4(a). Further out 
in Oc when tan Oc > t a n  0M, the dispersion, OC', 
tends towards the non-monochromator dispersion, 
OZ_, with slope of --- +26.6 ° from the lower side, but 
never quite reaching it. The change in slope of the 
locus with change in Oc for the (-)tOc region accords 
with that given by Schoenborn (1983). 

(b) The (+)tOe region 

The situation in this region can be dealt with in a 
similar manner, Fig. 4(b). The relationships derived 
from consideration of the 'illumination' and 'recep- 
tor/transmitter' distributions give the ratio of Ato to 
A20 as 

Ato k(tan 0c + tan OM) 
(3a) 

,420 - k(2 tan Oc +tan 0M)" 

As in the (-) toc region, the relationship summar- 
ized in (3a) can be put in diagrammatic form, Fig. 
4(b). In this region, the dispersion of both M and C 
is in the same sense. At Oc = 0 °, the dispersion in both 
Ato and A20 is +k  tan 0~4 and the slope of the locus 
is +45 ° to the +A20 axis. As Oc increases, the Ato 
and A20 dispersion components both increase. There 
are therefore no critical or interesting conditions 
encountered involving crossing either Ato or A20 
axes. As tan Oc increases, the dispersion tends, from 
the upper side, towards but does not reach that corre- 
sponding to the non-monochromator dispersion, 
OZ+. 

Monochromator axis perpendicular to the specimen 
axis 

For the situation where the monochromator crystal 
axis is perpendicular to that of the specimen crystal, 
i.e. ~o~ = 90 ° (Mathieson, 1968), the dispersion of the 
monochromator is at right angles to that of the speci- 

men crystal (crossed crystals). Hence, for zero-layer 
(flat-cone) operation, the dispersion in the diffraction 
plane of the specimen crystal is simply 2k tan Oc in 
respect of A20 and therefore corresponds essentially 
to the situation with no monochromator (Mathieson, 
1983). The dispersion in that plane is symmetrical 
with respect to +20o Note, however, that the 
wavelength range received by the specimen crystal C 
will depend on what the monochromator crystal 
transmits (see the following section on Extended 
source). 

When a lath-like crystal of widely differing 
dimensions or one with highly anisotropic fragment 
structure is used with a perpendicular mono- 
chromator, there is a significant possibility that it 
could pass, at the two extremes, rather different 
wavelength distributions. Re-orienting to obtain 1D 
neat profiles (Duisenberg, 1983), which would 
necessarily lead to spread of the fragment/anisotropy 
effect along the vertical aperture in front of the detec- 
tor, would not necessarily avoid the full consequences 
of this manoeuvre. Even with a spherical crystal, 
consistent centring is essential. 

The wavelength dispersion diagram for general ~M 
values 

By reference to Fig. 2(a) of Mathieson (1968) (which 
indicates the functional variation of ~o~), the various 
cases treated above may be unified into one 
relationship: 

Ato k(tan Oc + cos ~PM tan 0M) 

A20 - k(2 tan Oc +cos ~o~ tan 0~)" 
(4) 

Here we consider the specimen-crystal positive 
angular region, +20c, as being established according 
to the Allison-Williams (1930) proposal but specifi- 
cally for ~ = 0 °. 

Relationship (4) can be presented in a diagram- 
matic form as in Fig. 4(c). It will be noted that the 
lines for ~0~ = 0 and 180 ° are related symmetrically, 
with inversion of +20c and -20o 

Extended source 

Having dealt with cases relating to point sources, we 
must now consider the situation concerning an exten- 
ded source emitting radiation that is diffracted from 
a plane monoehromator of mosaic spread /zM and 
then incident on a point C (the specimen crystal). 
To appreciate the parameters of this problem, we 
make use of the principle of reciprocity in optics. 
First we consider a point source and determine the 
size of the resultant extended 'image' along the line 
SC in Fig. 5 as a function of the mosaic spread/zM, 
the depth of penetration of the radiation into the 
monochromator crystal 8 and the wavelength spread 
AA = (A~-A1). At this stage, some typical numerical 
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estimates are derived. Then, invoking the reciprocity 
principle, it is made evident what each part of the 
extended image (now the extended source) con- 
tributes to the beam incident on the point C (now 
the specimen crystal). 

This approach is detailed in Fig. 5 for the sym- 
Ao C o. SAo C o corre- metrical situation, i.e. S A ' =  ' ' ' ' 

sponds to the central beam of t h e / z ~  distribution. 
The outer limits of the distribution for monochro- 
matic radiation are indicated by OA_ and OA+. For 
the former, diffraction occurs from the surface plane 
of the monochromator  crystal, M' ,  at A'_ and passes 
through C~, on the line SC'o. For the latter, diffraction 
occurs at A~_ and also passes through C~,. Thus, 
although the mosaic distribution of M may be sym- 
metrical, the ' image' C ' C "  is asymmetric, the 
+(1 /2) /z~  and - ( 1 / 2 ) / z ~  components arriving at the 
same point in the 'image'. 

For a plane, M", below the surface but parallel to 
it, a similar argument leads to the corresponding 
'image', namely c7,r7" which is equal to C'C'~  to 
first order, but  displaced. The total ' image' will be 
compounded of the decreasing contributions from 
the planes progressively deeper in the mono- 
chromator crystal, each contribution being displaced 
progressively to the fight so that the total ' image'  has 
a sharp leading edge with a gradually fading trailing 
edge. 

The discussion in this section has been restricted 
so far to radiation of one wavelength, A~ (say). For 
radiation of another wavelength, A2> A1, the Bragg 
angle 02> 0~ and the corresponding ' image' will lie 
to the left of that for A1. 

Since the size of the total ' image' determines the 
appropriate dimension of the extended source, which 
will, according to the principle of reciprocity, feed 
signal into the point C, it is of concern to indicate at 

~A'_ A"_ AS Ao /A'. A'; M" M' \l/V//Z 
-~/2 / \ \ \  

Fig. 5. The relationship of a point source S and the extent of the 
'image' at C due to the mosaic spread of the monochromator 
crystal, ~M, the depth of penetration into the monochromator, 
3, for one wavelength, A. The disposition of S and C relative 
to M is essentially symmetrical. SAo($Ao) is the central beam 
and SA'(SA~_), SA_(SA_) the outer limits of the fan of beams 
due to the mosaic spread. The corresponding diffracted beams 
from the monochromator surface M' (and a plane below the 

A r C t ( A t ,  C . ~  ~ r , , surface, M") are --o--o,.-o--o,, A+C~,(A+C~) and 
A' C ~ (A" ('7." - - - - l ~ x - - - - - - ~ i .  

this stage the functional dependence of the individual 
components of the ' image'  associated with/z ,  3, AA 
and where possible derive some numerical estimates 
as a guide. For this purpose, it is assumed that Cu K s  
radiation is being used and that the monochromator  
is pyrolytic graphite, the 0002 reflection being used. 

( a ) Mosaic spread of  M 

So far as the /x~ contribution is concerned, this 
can be related to the diffraction from any sheet (plane) 
in the monochromator  parallel to the surface. If we 
consider the surface plane, M' ,  then, from 
geometrical arguments, based on Fig. 5, it can be 
shown that 

sin2(1/2)/z~ 
C" C~ 

SC°sin" [ 0 - (  1/2)/~M] sin [ 0 + ( 1/2)/zM] 

"~SC" sin 2 (1/2)/zM/sin 2 0. (5) 

In normal circumstances, one would be interested 
mainly in the dimension normal to the X-ray beam, 

t t which would correspond to Co C~ sin 0 = 
SC" sin 2 (1/2)/zM/sin 0. If SC" = 400 mm, /xM = 1 ° 

I t and 0 = 13.34 °, then CoC~, = 0.46 mm and the corre- 
sponding dimension perpendicular to A ' C ' =  
0.12 mm. 

( b ) Depth o f  beam penetration 

For a plane that is distant 8 below the surface of 
the monochromator ,  the leading edge of the ' image'  
will be at C'o', which is displaced 28 cot 0 along SC 
from C ' .  

To provide a realistic assessment of how deeply an 
incident and diffracted beam penetrates into a mono- 
chromator crystal, we use experimental data from 
Calvert, Killean & Mathieson (1975, 1976), which 
estimated the effective attenuation coefficient (and 
hence included the effects of n diffraction, i.e. 
extinction). 

We calculate the total path ~hat reduces the beam 
to 1% of the incident intensity. The central beam, 
with an effective attenuation coefficient of 17.9 cm -1, 
would penetrate 2.57 mm while beams associated 
with the outer limits of the mosaic distribution with 
a coefficient of 9.25 c m  - 1  would penetrate 4.98 mm. 
The corresponding 8 values would be 8(cent ra l )=  
0.3 mm, 8 (wing)=0 .57  mm. So, for 8(central), the 
displacement at the ' image'  would be 0 .6/ tan  0 = 
2.53 mm. As viewed along A ' C ' ,  the displacement 
at the ' image'  would be 1.14/tan 0 =4 .8  mm and 
viewed normal to A ' C "  this would be 1.11 mm. The 
relative depths of penetration of the central and wing 
beams are indicated in Fig. 6. 

(c) Wavelength band 

A change in wavelength from A to A + AA corre- 
sponds to a displacement of -2AO sec20/tan 0 to a 
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first approximation relative to C" so, for a disper- 
sion of A h / h = k ,  Co(h~)Co(h2) corresponds to 
- 2 k  sec20 SC ' .  

If we accept appropriate figures from Mathieson 
(1984b), then AA =0.012 A, h = 1.54/~, so AA/A = 
0"0078. (This corresponds to 0.4 pm in front of  h~,, 
0.4 pm behind h,,~ and 0.4 pm between h,~ and h,,~.) 
In that case, the displacement is - 2 k  sec20SC" = 
5.9 mm. Viewed normal to AoCo; ' this is 1.36 mm. 

These items are summarized in Table 1. The com- 
ponents /zm and 8 are two different but inter-related 
aspects of  the monochromator.  I f /zm were reduced 
in size, i.e. less mosaic, then the effective attenuation 
coefficient for the central beam would increase and 
8 for the central beam decrease. The estimate for the 
wings would, however, remain unchanged. Basically, 
for pyrolytic graphite, the depth penetration is of 
greater significance than the mosaic spread. For 
monochromator  crystals composed of elements of 
higher absorption, the reverse could be the case. 

Invoking the principle of reciprocity, we now invert 
the roles of  source and specimen crystal. If we con- 
sider the extended line source, S, as emitting uni- 
formly then, by reference to the treatment above, we 
can identify those parts of the source associated with 
the various components/zm, 8, AA, i.e. we match the 
' i l lumination'  distribution range along S for a given 
component with the corresponding ' receptor/ trans-  
mitter' distribution at the point C. Fig. 7 demonstrates 
the distribution of component  ranges along the exten- 
ded source, S. In Fig. 7(i), as in reality, the com- 
ponents all lie in the line S, whereas in Fig. 7(ii) the 
various components are displayed at different vertical 
levels in order to differentiate their intensity contribu- 
tions and identify their origin. Also, although the A~ 
and A2 components correspond to a smooth distribu- 
tion, they are shown here for clarity as discrete com- 
ponents. 

One can see fairly readily from Fig. 7 how limiting 
the size of  the source.(by using a focusing assembly 
or by tilting the X-ray tube to foreshorten the source 
further) can influence the composition of the radi- 
ation arriving at C. For example, if we imagine the 
source reduced to a length AB, as in Fig. 7, then 
certain components will not be activated and reach 
C. Thus, the A~ contribution from the surface plane, 

s co co ~' c~ 

Fig. 6. Illustration, for a typical experimental situation, of the 
relative depths of penetration, St, 32, of the central and wing 
beams respectively into the monochromator crystal, due to the 
difference in level of interaction (extinction). The hatched area 
represents the penetration to the 1% diffraction level. 

Table 1. Size o f  the source necessary to feed radiation 
into point C from the various components listed, using 

the parameters in the text 

Component Size of the source 
(mm) 

(a) (b) 
/x M 0.45 0.12 

8 2.53-4-8 0.58-1.11 
A 5-9 1.36 

(a) along SC and (b) perpendicular to A',,C~. 

M',  will be transmitted maximally but those from 
planes below the surface will progressively decrease, 
not merely because of the depth, 8, but also due to 
progressive truncation of the wings of the mosaic 
distribution. On the other hand, the A2 contribution 
from the surface plane will be zero and will progres- 
sively increase its contribution from the wings of the 
A1 distribution as one goes deeper below the surface. 
So the wavelength distribution reaching C would be 
modified by the restriction of the source size. Ladell 
& Spielberg (1966) noted the cut-off effect of reducing 
source size. The present discussion provides a more 
detailed appreciation of this effect. 

Combining the effect of wavelength dispersion and 
extended source/monochromator 

In previous sections, the effects associated with (a) 
the wavelength dispersion interaction between mono- 
chromator and specimen crystals and (b) an extended 

~i) s 

A B 

(ii) 

X 
i .  

; i 

M/I l l  ~ _ ' - - j  ~ _ ' - _ - _ i  
M Il l  _= -  : - ~,, -=_- -  -.-_ ~ 

M I1 ~ 

M 1 ~ 

> / ' ~M  < 

Fig. 7. The relation of the extended source, S, which feeds radiation 
into the point 'image' C. (i) represents the combination of the 
components,/zm, 8, AA, into the source, as in reality, in one line. 
In (ii), the various components from different levels in M are 
displayed at different vertical positions to demonstrate their 
displacement along S (in the line CS in Fig. 5). The asymmetric 
nature of the effective radiation transmission to the image due 
to the mosaic of M is indicated by the triangular shapes while 
the break into two components at each M level indicates the 
two wavelength components. The diagram shows how physical 
limitation of the size of the source to AB (say) influences the 
composition of the radiation reaching the point C. 
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source and monochromator  crystal have been treated 
individually. In this section, the combination of these 
effects will be considered. It is evident that a complete 
description of  all possibilities is not feasible so some 
selection is necessary. The combination of effects that 
is most complex relates to the (-)tOe region when 
~p~ = 180 ° so we shall consider this for different values 
of tan Oc relative to tan 0M. 

In Fig. 8, the various situations are illustrated 
diagrammatically for the to scan. The specimen crystal 
mosaicity is /Zc; the combined effects of 
source/monochromator  mosaicity is designated 
or//z~ while the wavelength distribution is designated 
A. We assume that the A distribution involves a doub- 
let A~, A2, A 1 being of shorter wavelength and of 
greater intensity. The loci of the components are 
detailed in Fig. 8(i) while (ii) attempts to indicate the 
2D distribution. Fig. 8(iii) treats the classical so-called 
parallel case for a vanishingly small source. 

Fig. 8 illustrates the situations where (a) 0 <  
tan Oc<(1/2) tan 0~;  (b) tan Oc=(1/2)tan 0~; (c) 
tan Oc = tan 0M and (d)  tan Oc > tan 0~. The A1, A2 
components are differentiated, As being filled in while 
A2 is dotted. Inspection of Fig. 8 shows that the overall 
shapes of the reflections change considerably as Oc 
varies from near 0 ° to the region where Oc >> 0~. 
However, inspection of the diagrams (i) of Fig. 8 
indicates that the components /Zc and tr//xM are 

constant in Ato, A20 angular terms (Mathieson, 
1984a) and it is the A component  that produces the 
shape modification. In the low- 0c -angle region, the 

or ientat ion of the A locus changes rapidly and it is 
this that leads to the significant change in appearance. 
In this figure, the differentiation of As and A 2 allows 
a more ready appreciation of their relative disposi- 
tion, which is markedly different from that in the 
non-monochromator  case until one reaches the region 
Oc >> OM. 

In respect of this change in shape with change in 
Oc, it is clearly evident that, for the conventional 
wide-aperture procedure, which measures only the 
1D profile intensity, I(Ato), the minimum aperture 
size required (determined by the range of A20) must 
be varied continuously with change in Oo This is the 
case whatever the scan procedure used because of 
the variation in the A locus, cf. the non-mono- 
chromator case (Matheison, 1982, 1984a). Whether 
this need for aperture variation has been fully appreci- 
ated in X-ray diffractometry in the past is not clear. 

The case where ~oM = 0 ° does not require detailing 
as it is similar to that in Fig. 8(d),  except that it 
approximates to the non-monochromator  case from 
above rather than below. 

For the case ~0M = 90 °, the situation is akin to that 
with no monochromator  and is essentially treated by 
Mathieson (1982, 1984a). 

(i) 
A28 

AoJ "or A~o 

~X ~ A28 A28 

(ii) / ~ / ~ Y ~ /  A2O A2O 

(b) (c) 

0 

(d) 

Fig. 8. A diagrammatic representation of the &o, A20 (°) intensity distribution, i.e. for an to scan, involving a radiation doublet, A1, A2 
in the case where ~PM = 180° and the (-)to c region is considered, for different values of tan 0c relative to tan OM: (a) 0 < t a n  0c < 
(1/2) tan OM; (b) tan 0c = (1 /2)tan 0M; (c) tan 0c = tan OM; (d) tan 0c > tan OM. The specimen-crystal mosaicity is designated/~c, 
the source/monochromator mosaicity combination cr/l~ M and the wavelength distribution A. (i) indicates the relative size and 
orientation of the /~, cr/I~M, A components with respect to the A¢o, A20 axes; (ii) the size of the six-sided box defined by the 
components, the peak regions of A1 and A2 being indicated by the filled and dotted bands respectively; (iii) the classical so-called 
parallel case for a vanishingly small source. 
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Abstract  

A computer procedure has been developed to calcu- 
late second-order thermal diffuse scattering (TDS) 
intensity for molecular crystals from lattice- 
dynamical calculations with an atom-atom potential 
in the Born-von K~irmfin formalism. It is applied to 
monoclinic phenothiazine and different contributions 
to second-order TDS intensity, acoustic-acoustic, 
acoustic-optic and optic-optic, are compared. Calcu- 
lations are also performed in the long-wave approxi- 
mation allowing for dispersion (LWD) and correction 
factors of Bragg intensities due to TDS contribution 
in the LWD approximation are, generally but not 
always, lower than lattice-dynamical ones; the ratio 
between LWD and 'exact' factors ranges from 0.4 to 
1.4 for reflections considered. 

Introduct ion  

In a previous paper (Criado, Conde & Mfirquez, 1985) 
we reported a computational procedure to calculate 
first-order thermal diffuse scattering (TDS) intensity 
from a lattice-dynamical point of view, using the 
external Born-von K~irmfin formalism within the har- 
monic approximation and a potential function in a 
pairwise form, where each pair contribution adopts 
the form: V ( r ) = - A / r 6 + B  exp ( - C r ) ;  A, B and C 
are constants empirically adjustable. This method was 
applied to monoclinic phenothiazine, where a pro- 
posed potential function model had been successful 
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for calculating the thermal crystallographic para- 
meters (Criado, Conde & Mfirquez, 1984) and the 
contribution of inelastic TDS intensity to Bragg reflec- 
tions measured on a diffractometer by calculating the 
first-order correction factors for different reflections. 
Further calculations revealed the influence of first- 
order TDS intensity over electronic density maps and 
structural parameters obtained in least-squares refine- 
ments. The long-wave limit (Born & Huang, 1968) 
allowing for dispersion of the acoustic mode frequen- 
cies was found to be quite suitable when calculating 
correction factors because inside the small volumes 
used to scan the Bragg intensity around a reciprocal- 
lattice point this limit is usually a good approxi- 
mation. 

Most of the existing programs that correct 
measured Bragg intensities for thermal diffuse scatter- 
ing effects (Helmholdt & Vos, 1977; Walker & 
Chipman, 1970) use the long-wave (LW) approxima- 
tion taking as the starting point the elastic constants 
of the crystal and calculating the frequencies and 
polarization vectors from them, and only very recently 
(Helmholdt, Braam & Vos, 1983) has the dispersive 
character of the acoustic modes been taken into 
account (LWD approximation) using acoustic 
frequencies obtained from lattice-dynamical calcula- 
tions. 

For the second-order TDS contribution, less effort 
has been devoted to it, mainly because of the huge 
amount of computational time required. The pro- 
grams that consider it adopt the LW approximation 
(Stevens, 1974) and, in order to reduce the computing 
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